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Spectral Estimation for the Transmission Line
Matrix Method

JACK D. WILLS

Abstract — Spectral estimation for the transmission line matrix (TLM)
method by use of the discrete Fourier transform and fast Fourier trans-
form is reviewed. Error bounds are given and checked by means of a
numerical example. A new spectral estimation method based on Prony’s
method is presented for use with TLM. A numerical example shows that
the new method allows an order of magnitude reduction in the number of
iterations in the TLM method for equal accuracy.

I. INTRODUCTION

The transmission line matrix (TLM) method for microwave
circuit analysis calculates the time-domain variation of the elec-
tromagnetic fields in response to an arbitrarily chosen excitation
[1]. Because of the discrete nature of the TLM method the output
waveform is not a continuous function; it is a sequence of delta
functions of varying amplitude. These delta functions are sepa-
rated in time by Az, which depends on the cell size used in the
TLM model. This time is given by

Ar=Al/c

where A/ is the spacing between nodes and ¢ is the velocity of
light in free space.

Frequently the desired information from TLM analysis is not
the time-domain response but rather frequency-domain informa-
tion. A common use of TLM is to determine the resonant
frequencies of the characteristic modes of a microwave structure.
To obtain these frequency-domain data we must apply some
spectral estimation method to the time-domain output data. In
the remainder of this paper we shall review spectral estimation
methods presently in use for TLM, suggest an alternative spectral
estimation method which appears promising, and compare nu-
merical results for a typical problem.

II. PRESENT METHODS

In the original paper describing TLM, Johns and Beurle used
Fourier transform techniques to obtain the frequency response of
the circuit [2]. Specifically they applied the Fourier integral to the
sequence of delta functions which represented the time-domain
response of the circuit. By an application of the sifting property
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of the delta function, they expressed the frequency-domain re-
sponse as a pair of finite summations:

e (2] - 3 reosfort]

k=1

Im(F(%)) = %’ I, sin(27rké>\{)

k=1

(D)

(2

where F(Al/A) is the frequency response, I, is the output
impulse response at time ¢ = k(A//c), and NI is the total num-
ber of iterations used in the TLM method.

We can then form either |F(Al/A)| or |F(Al/M\)* (which are
analogous to voltage magnitude or power respectively) and plot
this as a function of frequency. Resonant frequencies of the
microwave circuit correspond to peaks (local maxima) of the plot.

These equations are written in a normalized form. Johns and
Beurle rescaled so as to make the interval between pulses unity
rather than Az. Thus they divided all times by Az and multiplied
all frequencies by Atz. We note that

A Al Al Al
7=- _Aff_x

(3
which gives the frequency variable used in (1) and (2). By
Nyquist’s criterion, f<1/2A¢, which ensures that 0 < Al/A <
0.5.

There are two sources of error in determining resonant fre-
quency in this manner. The first is a truncation error. One can
only run the TLM simulation for a finite number of iterations,
which we denote by NI. This has the effect of viewing the true
(infinitely long) time-domain response through a rectangular
window. The duration of this window is NJA¢. In the frequency
domain, the effect of this windowing is to convolve the true
frequency spectrum with the function

Al
Al sin( wNIAtT)
medow(_;) =———Tl_'
ﬂNIAtT

(4)

The effects of this convolution are twofold. It widens the peaks
in the frequency response plot, and the side lobes of the sin x /x
function cause the side lobes due to one response peak to overlap
the main lobe of another response peak. The result is that the
observed local maxima of the frequency response are shifted
away from their true values. Johns has derived an error bound for
this shift [3]. For two response peaks of equal amplitude, sepa-
rated by normalized frequency S = A//X, Johns found the maxi-
mum truncation error AS, to be bounded by

trunc

3

AS, —.
S(NIz)”

trunc

<=*

()

An additional error source arises in finding the peaks in the
response curve. While the frequency response given by the finite
summation in (5) is a continuous function of frequency, we can
only evaluate this equation at a finite number of points. If we
evaluate the frequency response at NF points equally spaced
across the interval (0, 0.5) any peak we find may be shifted from
its true position by a normalized frequency of +1/4NF. This
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Fig. 1 Geometry of the waveguide resonator.

suggests that we choose NF so that

NF >

6
4AS, . (©)

where AS,, is the maximum acceptable normalized frequency
error. We should note that (6) is a conservative bound; use of
interpolation or curve-fitting techniques can provide improved
accuracy.

Evaluation of the frequency response may be done one fre-
quency at a time by the discrete Fourier transform (DFT). This
was the method originally used by Johns [4]. If it is desired to
find the frequency response at a number of equally spaced
frequencies, then it is computationally efficient to replace the
DFT with the fast Fourier transform (FFT). The FFT is now
widely used in TLM calculations [1].

It should be emphasized that using the FFT does not require
that NI = NF. If accuracy considerations based on (5) and (6)
suggest that NF> NI, then the NI impulses from the TLM
simulation can be extended by zero-padding the data to provide
NF samples for the FFT routine. While this does not alter the
width of the sinx/x spreading, it does provide closer spaced
samples in the frequency domain, which improves the accuracy of
the peak finding [5].

III. NUMERICAL RESULTS

We present numerical results for an inhomogeneous cavity
resonator. The resonator consists of WR-90 rectangular wave-
guide half filled with air (¢, =1.0) and half filled with polystyrene
(¢, =2.45). The length of the waveguide is 0.600 in and a con-
ducting wall covers each end of the waveguide. Fig. 1 illustrates
the geometry of the resonator. This geometry was chosen because
it is an inhomogeneous problem that can be solved analytically,
which provides an independent check of the numerical results [6].

A symmetrical condensed node TLM algorithm was used to
determine the dominant resonant frequency. This algorithm is
due to Johns [7]. Cubical nodes were used, with a nodal spacing
of 0.100 in, yielding a nodal array of dimensions 9 X4 X 6. The E,
field was excited in the dielectric-filled region in the center of the
resonator. The output field sampled was the E, field in the center
of the cavity (node 4, 2, 3). The number of iterations NI ranged
from 128 to 4096 in powers of 2. The number of frequencies
evaluated, NF, also ranged from 128 to 4096, independent of NJ.

The relatively coarse mesh chosen causes appreciable modeling
error. This error was estimated by first finding the exact resonant
frequency by separation of variables, and then running the TLM
method for an extremely large number of iterations (which is
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TABLE 1
TRANSMISSION LINE MATRIX WITH FAST FOURIER TRANSFORM

NI TIteration @ NF FFT Frequency Fractional
Time Time (GHz) Error
(sec) (sec)

128 158.9 128 1.9 9.22108 -1.01%
256 2.9 9.68213 +3.94%

512 3.7 9.68213 +3.94%

1024 63  9.56687  4+2.71%

2048 11.6 9.56687 +2.71%

4096  23.2 9.56687 +2.71%

256 313.0 256 2.6 9.22108 -1.01%
512 3.8 9.45160 +1.47%

1024 6.3 9.33634 +0.23%

2048 117 9.39397 +0.85%

4096  23.3 9.39397 +0.85%

512 621.0 512 3.7 9.22108 -1.01%
1024 6.4 9.33634 +0.23%

2048 118 9.33634 +0.23%

4096 23.5 9.33634 +0.23%

1024 1237.7 1024 6.4 9.33634 +0.23%
2048 11.8 9.33634 +0.23%

4096  23.6 9.30752 -0.08%

2048 2472.0 2048 122 9.33634 +0.23%
4096  23.8 9.30752 -0.08%

4096 4937.0 4096 24.2 9.30752 -0.08%

normally impractical due to the excessive computer time re-
quired) so that the truncation error becomes insignificant.

The TLM method run with NI =16384 and NF =16384 gives
the dominant resonance at 9.315 GHz and the next higher
resonance at 21.612 GHz. Analytic results give the dominant
resonance (corresponding to the LSM,, waveguide mode) at
9.362 GHz, with the next resonance occurring at 20.910 GHz.
The modeling error is —0.49 percent for the lowest resonance
and +3.35 percent for the higher resonance. These errors are a
function of the spacing between the nodes. The chosen spacing of
0.100 in corresponds to 12.60 cells per wavelength at 9.362 GHz
and 5.64 cells per wavelength at 20.910 GHz. By spacing the
nodes more closely we could reduce the modeling error. This was
not done in order to minimize the computational effort involved
in running these test cases.

For the remainder of this paper we shall ignore the modeling
error and concentrate on the error in frequency estimation. In
Table I we list the calculated resonant frequencies for the various
values of NI and NF, as well as the fractional error relative to
the converged TLM result. If we desire an accuracy better than
+0.10 percent, we see that we must choose NI>1024 and
NF > 4096. For the case NI =1024, NF=4096 the TLM itera-
tions take 1238 s. The frequency estimation using the FFT takes
24 s. If frequency estimation is done by a DFT instead of the
FFT then the frequency estimation akes 3267 s. These timings
were obtained using an 80286,/80287 based personal computer
clocked at 10 MHz.

Let us compare these results with the error bounds given in
Section II. By applying (5) to the dominant and next higher
resonance (and their reflections in the negative frequency part of
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the spectrum) we find that NI =512 gives an error smaller than
+0.114 percent and NJ =1024 gives an error smaller than +0.028
percent. Application of (6) to the dominant resonance indicates
that we need NF > 6329 to ensure an error less than +0.10
percent. These bounds show reasonable agreement with the nu-
merical results obtained.

IV. PRONY’S METHOD

Why does the FFT lead to errors in frequency estimation? The
time-domain impulse response of a lossless microwave circuit at a
fixed observation point can be expressed as a summation over the
resonant modes:

e e}
G(t) =), a,cos2nf,t+b,sin2auf,t (7
n=1
where a, and b, are modal amplitudes and f, are the resonant
frequencies. When we approximate this impulse response using
the FFT we obtain a summation of the form

o0
G(t) = Y. a,cos2mnfyt + b, sin2anfyt (8)

n=1
where f, =1/(NAt). The frequencies used in the FFT-derived
estimate are all harmonics of f, which is the fundamental
frequency associated with the observation period. But the actual
resonant frequencies are not harmonically related, so a mismatch
between the actual resonant frequencies and the FFT frequencies
is unavoidable. This mismatch is the source of both the trunca-

tion and peak finding errors.

To avoid these errors we could try to fit an expansion such as
(7) directly to the TLM data by choosing a,,, b,, and f, appro-
priately. This can overcome the frequency mismatch problem. It
is not possible to let the summation range from 0 to co so we
must truncate the summation at some upper limit NF. Since in
the true impulse response, the coefficients a, and b, tend to 0 as
n— oo, the effects of this truncation can be made as small as
desired by choosing NF large enough. We are then left with the
problem of choosing a,, b,, and f, so that
NF

G(t) =) a,cos2uf,t+b,sin2af,1 (9)
n=1
gives the best possible fit to the data resulting from the TLM
simulation.

A conventional application of least-squares techniques to (9)
gives a set of nonlinear equations which are computationally
impractical. Baron de Prony found an ingenious method for
solving this class of problem in 1795. His method replaces the
nonlinear set of equations with a single polynomial. The roots of
this polynomial determine the frequencies f,. A detailed explana-
tion of the method is given by Hildebrand [8]. We provide an
outline of the method as follows:

We define a rectangular matrix C having dimension (ND —

2NF) by (NF) where
{I”/—G—Il—j+2NF, J#* NF
l/=

j=NF (10)

[I FNF
and a vector d of length (ND —2NF) by
d

We then find a vector X which solves the equation

(1)

==L =1 e

C-x=d (12)

either exactly or in a least-squares sense. The vector X determines
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TABLE 1I
TRANSMISSION LINE MATRIX USING PRONY’S METHOD

NI TIteration NF  Prony Frequency FP Relative
Time Time (GHz) Error
(sec) (sec)
32 43.01 15 37.73 9.58274 .9907 +2.877 %
64 81.57 15 78.05 9.32653 .99972  40.127 %
128 158.68 15  154.12 9.31658 .999173 +0.020 %
256 312.74 15 281.82 9.31484 998288 +40.000 %
512 621.21 15  557.17 9.31541 .996391 +0.007 %
1024 1237.86 15 1094.83 9.31570 995713 40.010 %

a polynomial P(w) which may be expressed as

Tyria(cosw) + x,Typ(cosw) + -+ + xXyp Ty + EXNF’I;) =0

(13)
where the 7, are the Chebyshev polynomials. We then find the
roots of the polynomial and take the inverse cosine to obtain
w,," -+, Wypy1, Which are the desired angular frequencies. The f,

are given by
w,

.f;] - - (14)

__277’

Now that we have determined the frequencies, the modal ampli-
tudes a, and b, can be found by solving a second linear
least-squares problem.

Prony’s method has been previously used in electromagnetics
[9]. When it is used with experimental data, problems may arise,
as the method is sensitive to noise in the data. Also the choice of
order is critical, as either too high or too low an order can give
poor accuracy, and there is no good criterion for selection of the
order [10]. When used with TLM data these problems are allevi-
ated. The TLM simulation is inherently noise-free (except for
round-off errors, which are usually insignificant). Selection of the
order is also not critical. While use of too low an order gives poor
accuracy, use of too large an order gives accurate results at the
expense of a greater computation time.

V. NUMERICAL RESULTS

We have used Prony’s method in association with condensed-
node TLM to obtain the resonant frequencies of the same inho-
mogeneous waveguide resonator that was described in Section
III. The linear least-squares problems were solved by a singular
value decomposition technique. Laguerre’s method was used for
the polynomial root finding [11]. To conserve memory the TLM
simulation used single precision arithmetic but it was found to be
necessary to use double precision arithmetic throughout the sub-
routine that implemented Prony’s method.

Both NI, the number of iterations, and NF, the number of
frequencies to fit, were varied. In Table IT we list the results
obtained for NI ranging from 32 to 1024 in powers of 2. NI was
fixed at 15 for these runs. Justification for this choice of NI is
given later. To obtain 40.10 percent accuracy it is necessary to
choose NI >128. This is a considerable reduction compared with
the number of iterations needed to obtain comparable accuracy
using a FFT.

The value selected for NF has a significant effect on the
performance of Prony’s method. If too smail a value is chosen,
the accuracy of the spectral estimate suffers, as the estimate
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TABLE III
TLM USING PRONY’S METHOD (NT =128; NF VARIABLE)

NF Time Frequency FP Fractional

Prony (GHz) Error
(sec)

1 1.0 6.54095 0.001 -29.78%
2 34 5.41799 0.000 -41.83%
3 7.0 3.30758 0.020 -64.49%
4 11.2 2.77753 0.134 -70.18%
5 17.0 2.40053 0.070 -74.23%
6 25.4 2.18275 0.037 -76.57%
7 37.0 1.85374 0.009 -80.10%
8 44.0 1.09399 0.506 -88.26%
9 50.8 9.64002 0.979 +3.49%
10 62.7 9.40548 0.993 +0.97%
11 79.5 9.29897 0.995 -0.17%
12 93.9 9.30600 0.998 -0.09%
13 109.1 9.29602 0.999 -0.20%
14 1240 9.31200 0.999 -0.03%
15 1554 9.31658 0.999 +0.02%
16  168.2 9.31399 0.999 -0.01%
17 190.1 9.30985 0.999 -0.05%
18 2123 9.31218 0.999 -0.03%
19 245.8 9.31340 0.999 -0.01%
20  263.6 9.31429 0.999 -0.01%

cannot model all the significant frequency components in the
TLM simulation. If NF is chosen too big the execution time of
the program is increased. Also choosing NF too big requires
solving large matrices and rooting polynomials of large order,
which may lead to numerical instability. How shall we select
NF? (
One simple approach is to choose a very small value for NF,
perform the calculations, and then increment NF and repeat the
calculations. This process is continued while monitoring the
frequency values of the spectral components of interest. When
the frequency values have converged to the desired accuracy the
process is terminated.

A more efficient approach is to measure directly the quality of
the spectral estimate obtained using Prony’s method. We select a
value for NF and use Prony’s method to determine both the
frequencies f, and the amplitudes a,, b,. Then for a time step k
in the TLM simulation the actual response is I, and the esti-
mated response due to Prony’s method is I/, which is given by

IV =G(kAr) (15)
with G(¢) defined by (9). Then we define the residual R}/ by
R/ =1 -1V (16)

We then compare the power in the residual to the power in the
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TLM simulation. The fractional power FP is given by
NI R
> (RY)
FP=1-+31 : (17)
T ()
k=1

The fractional power can be used to test the value of NF. If
FP>0.999 then our experience is that the value for NF is
satisfactory. If FP <0.999 then the value of NF should be
increased.

Table III gives results for N/ =128 and 1< NF<20. We see
that if NF<8 Prony’s method is grossly inaccurate and that
FP<0.60. If NF>13 then FP>0.999 and the accuracy is
satisfactory. The data also show that the exact choice of NF is
not critical provided NF is large enough.

VL

FFT spectral estimation methods assume that the various
frequency components in the TLM simulation are harmonically
related. A more accurate spectral estirnate is possible by allowing
both the frequencies and the amplitudes to vary. These ampli-
tudes and frequencies may be found by using Prony’s method.
Prony’s method allows about a 10 to 1 reduction in the number
of steps in the TLM simulation for equal accuracy when com-
pared with FFT methods. Further work is needed to find more
efficient ways to implement Prony’s method. Improvements may
be possible in the polynomial rooting. as we know that the roots
are all real roots and lie in the interval [—1,1].

CONCLUSIONS
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