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Spectral Estimation for the Transmission Line

Matrix Method

JACK D. WILLS

Abstract — Spectral estimation for the transmission line matrix (TLM)
method by use of the discrete Fourier transform and fast Fourier trans-

form is reviewed. Error bounds are given and checked by means of a

numerical example. A new spectral estimation method based on Prony’s

method is presented for use with TLM. A numerical example shows that

the new method allows an order of magnitude reduction in the number of

iterations in the TLM method for equal accuracy.

I. INTRODUCTION

The transmission line matrix (TLM,) method for microwave

circuit analysis calculates the time-domain variation of the elec-

tromagnetic fields in response to an arbitrarily chosen excitation

[1]. Because of the discrete nature of the TLM method the output

waveform is not a continuous function; it is a sequence of delta

functions of varying amplitude. These delta functions are sepa-

rated in time by At, which depends on the cell size used in the

TLM model. This time is given by

At= Al/c

where Al is the spacing between nodes and c is the velocity of

light in free space.

Frequently the desired information from TLM analysis is not

the time-domain response but rather frequency-dom-ain informa-

tion. A common use of TLM is to determine the resonant

frequencies of the characteristic modes of a microwave structure.

To obtain these frequency-domain data we must apply some

spectraf estimation method to the time-domain output data. In

the remainder of this paper we shall review spectral estimation

methods presently in use for TLM, suggest au alternative spectraf

estimation method which appears promising, and compare nu-

merical results for a typical problem.

II. PRESENT METHODS

In the original paper describing TLM, Johns and Beurle used

Fourier transform techniques to obtain the frequency response of

the circuit [2]. Specifically they applied the Fourier integraf to the

sequence of delta functions which represented the time-domain

response of the circuit. By an application of the sifting property
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of the delta function, they expressed the frequency-domain re-

sponse as a pair of finite summations:

(2)

where F( A 1/ A ) is the frequency response, IL is the output

impulse response at time t= k ( A l/c), and NI is the total num-

ber of iterations used in the TLM method.

We can then form either \F(A1/A ) I or IF( Al/X) IZ (which are

analogous to voltage magnitude or power respectively) and plot

this as a function of frequency. Resonant frequencies of the

microwave circuit correspond to peaks (local maxima) of the plot.

These equations are written in a normalized form. Johns and

Beurle resealed so as to make the intervaf between pulses unity

rather than At. Thus they divided all times by At and multiplied

all frequencies by A i’. We note that

Atf=;f=;; f=: (3)

which gives the frequency variable used in (1) and (2). By

Nyquist’s criterion, f < l/2 At, which ensures that 0< A1/A <

0.5.

There are two sources of error in determining resonant fre-

quency in this manner. The first is a truncation error. One can

only run the TLM simulation for a finite number of iterations,

which we denote by NI. This has the effect of viewing the true

(infinitely long) time-domain response through a rectangular

window. The duration of this window is NIA t.In the frequency

domain, the effect of this windowing is to convolve the true

frequency spectrum with the function

F
(!) ‘ini7NrAt3

window
i= Al ‘

trNIAt T

(4)

The effects of this convolution are twofold. It widens the peaks

in the frequency response plot, and the side lobes of the sin x/x

function cause the side lobes due to one response peak to overlap

the main lobe of another response peak. The result is that the

observed local maxima of the frequency response are shifted

away from their true values. Johns has derived an error bound for

this shift [3]. For two response peaks of equal amplitude, sepa-

rated by normalized frequency S = Al/A, Johns found the maxi-

mum truncation error A S,,UnCto be bounded by

(5)

An additional error source arises in finding the peaks in the

response curve. While the frequency response given by the finite

summation in (5) is a continuous function of frequency, we can

only evaluate this equation at a finite number of points. If we

evaluate the frequency response at NF points equally spaced

across the interval (O, 0.5) any peak we find may be shifted from

its true position by a normalized frequency of + l/4NF. This
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suggests that we choose NF so that

1

‘F> 4ASpeak
(6)

where A SP,..L is the maximum acceptable normalized frequency

error. We should note that (6) is a conservative bound; use of

interpolation or curve-fitting techniques can provide improved

accuracy.

Evaluation of the frequency response may be done one fre-

quency at a time by the discrete Fourier transform (DFT). This

was the method originally used by Johns [4]. If it is desired to

find the frequency response at a number of equally spaced

frequencies, then it is computationally efficient to replace the

DFT with the fast Fourier transform (FFT). The FFT is now

widely used in TLM calculations [1].

It should be emphasized that using the FFT does not require

that NI = NF. If accuracy considerations based on (5) and (6)

suggest that NF > iVI, then the NI impulses from the TLM

simulation can be extended by zero-padding the data to provide

NF samples for the FFT routine. While this does not alter the

width of the sin x/x spreading, it does provide closer spaced

samples in the frequency domain, which improves the accuracy of

the peak finding [5].

III. NUMERICAL RESULTS

We present numerical results for an inhomogeneous cavity

resonator. The resonator consists of WR-90 rectangular wave-

guide half filled with air (c, = 1.0) and half filled with polystyrene

(c, = 2.45). The length of the waveguide is 0.600 in and a con-

ducting wall covers each end of the waveguide. Fig. 1 illustrates

the geometry of the resonator. This geomet~ was chosen because

it is an inhomogeneous problem that can be solved analytically,

which provides an independent check of the numerical results [6].

A symmetrical condensed node TLM algorithm was used to

determine “the dominant resonant frequency. This algorithm is

due to Johns [7]. Cubical nodes were used, with a nodal spacing

of 0.100 in, yielding a nodal array of dimensions 9X4X 6. The Ey

field was excited in the dielectric-filled region in the center of the

resonator. The output field sampled was the E, field in the center

of the cavity (node 4, 2, 3). The number of iterations NI ranged

from 128 to 4096 in powers of 2. The number of frequencies

evaluated, NF, also ranged from 128 to 4096, independent of N1.

The relatively coarse mesh chosen causes appreciable modeling

error. This error was estimated by first finding the exact resonant

frequency by separation of variables, and then running the TLM

method for an extremely large number of iterations (which is

TABLE I
TRANSMISSIONLINE MATRIX WITH FAST FOURIERTRANSFORM

NI

128

256

512

1024

2048

4096

Iteration NF
Time
(See)

158.9 128

256

512
1024

2048

4096

313.0 2.56

512
1024

2048
4096

621.0 512
1024
2048

4096

1237.7 1024
2048

4096

2472.0 2048

4096

4937.0 4096

FFT
Time

(see)

1.9

2.9

3.7

6.3

11.6

23.2

2.6

3.8

6.3

11.7

23.3

3.7

6.4

11.8

23.5

6.4

11.8

23.6

12.2
23.8

24.2

Frequency

(GHz)

9.22108

9.68213

9.68213

9.56687

9.56687

9.56687

9.22108

9.45160

9.33634

9.39397

9.39397

9.22108

9.33634

9.33634

9.33634

9.33634

9.33634

9.30752

9.33634

9.30752

9.30752

Fractional

Error

-1.01%

+3.94%

+3.94%

+2.71%

+2.71%

+2.71%

-1.01%

+1.47%

+0.23%

+0.85%

+0.85%

-1.01%

+0.23%

+0.23%

+0.23%

+0.23%

+0.23%

-0.08%

+0.23%

-0.08%

-0.08%

normally impractical due to the excessive computer time re-

quired) so that the truncation error becomes insignificant.

The TLM method run with NI = 115384 and NF=16384 gives

the dominant resonance at 9.315 GHz and the next higher

resonance at 21.612 GHz. Analytic results give the dominant

resonance (corresponding to the L SMIO waveguide mode) at

9.362 GHz, with the next resonance occurring at 20.910 GHz.

The modeling error is – 0.49 percent for the lowest resonance

and + 3.35 percent for the higher resonance. These errors are a

function of the spacing between the nodes. The chosen spacing of

0.100 in corresponds to 12.60 cells per wavelength at 9.362 GHz

and 5.64 cells per wavelength at 2O.91O GHz. By spacing the

nodes more closely we could reduce the modeling error. This was

not done in order to minimize the co~putational effort involved

in running these test cases.

For the remainder of this paper we shall ignore the modeling

error and concentrate on the error in frequency estimation. In

Table I we list the calculated resonant frequencies for the various

values of N1 and NF, as well as the fractional error relative to

the converged TLM result. If we desire an accuracy better than

~ 0.10 percent, we see that we must choose NI >1024 and

NF >4096. For the case NI = 1024, NF = 4096 the TLM itera-

tions take 1238 s. The frequency estimation using the FFT takes

24 s. If frequency estimation is dorm by a DFT instead of the

FFT then the frequency estimation Iakes 3267 s. These timings

were obtained using an 80286/80287 based personal computer

clocked at 10 MHz.

Let us compare these results with the error bounds given in

Section II. By applying (5) to the dominant and next higher

resonance (and their reflections in the negative frequency part of
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the spectrum) we find that N1 = 512 gives an error smaller than

+ 0.114 percent and N1 = 1024 gives an error smaller than ~ 0.028

percent. Application of (6) to the dominant resonance indicates

that we need NF >6329 to ensure an error less than t 0.10

percent. These bounds show reasonable agreement with the nu-

merical results obtained.

IV. PRONY’S METHOD

Why does the FFT lead to errors in frequency estimation? The

time-domain impulse response of a lossless microwave circuit at a

fixed observation point can be expressed as a summation over the

resonant modes:

,1=1

(7)

where a,, and b,, are modal amplitudes and ~, are the resonant

frequencies. When we approximate this impulse response using

the FFT we obtain a summation of the form

G(t) = ~ a,, cos2rnf~t +b,jsin2rrnf~t (8)

11=1

where fw= 1/( NA t).The frequencies used in the FFT-derived

estimate are all harmonics of ~~, which is the fundamental

frequency associated with the observation period. But the actual

resonant frequencies are not harmonically related, so a mismatch

between the actual resonant frequencies and the FFT frequencies

is unavoidable. This mismatch is the source of both the trunca-

tion and peak finding errors.

To avoid these errors we could try to fit an expansion such as

(7) directly to the TLM data by choosing a,,, b,,, and ~, appro-

priately. This can overcome the frequency mismatch problem. It

is not possible to let the summation range from O to cc so we

must truncate the summation at some upper limit NF. Since in

the true impulse response, the coefficients a,, and b,, tend to O as

7Z- ~, the effects of this truncation can be made as small as

desired by choosing NF large enough. We are then left with the

problem of choosing a,,, b,,, and j, so that

,vF

G(t) = ~ a,, cos2~Jlt + b,, sin2r~, t
,,=1

(9)

gives the best possible fit to the data resulting from the TLM

simulation.

A conventional application of least-squares techniques to (9)

gives a set of nonlinear equations which are computationally

impractical. Baron de Prony found an ingenious method for

solving this class of problem in 1795. His method replaces the

nonlinear set of equations with a single polynomial. The roots of

this polynomial determine the frequencies f,. A detailed explana-

tion of the method is given by Hildebrand [8], We provide an

outline of the method as follows:

We define a rectangular matrix C having dimension (ND –

2 NF ) by ( NF ) where

(1,,, +11–j+2NF, J+NF

~!l= [ (lo)
,8 \F,

j=NF

and a vector ~ of length (ND – 2 NF) by

d,= – 1, – I,+2,VF. (11)

We then find a vector 2 which solves the equation

C.i?=cl (12)

either exactly or in a least-squares sense. The vector ,7 determines

TABLE II

TRANSMISSION LINE MATRIX USING PRONY’S METHOD

NI Iteration NF Prony Frequency FP Relative

Time Time (GHz) Error

(S’ec) (s&)

32 43.01 15 37.73 9.58274 .9907

64

i-2.877 %

81.57 15 78.05 9.32653 .99972 +0.127 %

128 158,68 15 154.12 9.31658 .999173 +0.020 %

256 312.74 15 281.82 9.31484 .998288 +0.000 %

512 621.21 15 557.17 9.31541 .996391 +0.007 %

1024 1237.86 15 1094.83 9.31570 .995713 +0.010 %

a polynomial P( co) which may be expressed as

T//F+ l(coscd) + XITNF(COSCJ) + . . . + xNF_l T1 + + = o

(13)

where the ~, are the Chebyshev polynomials. We then find the

roots of the polynomial and take the inverse cosine to obtain

QI, ” “ “, @NF+ 1, which me the desired angular frequencies. The ~,
are given by

(14)

Now that we have determined the frequencies, the modal ampli-

tudes a. and b,, can be found by solving a second linear

least-squares problem.

Prony’s method has been previously used in electromagnetic

[9]. When it is used with experimental data, problems may arise.

as the method is sensitive to noise in the data. Also the choice of

order is critical, as either too high or too low an order can give

poor accuracy, and there is no good criterion for selection of the

order [10]. When used with TLM data these problems are allevi-

ated. The TLM simulation is inherently noise-free (except for

round-off errors, which are usually insignificant). Selection of the

order is also not critical. While use of too low an order gives poor

accuracy, use of too large an order gives accurate results at the

expense of a greater computation time.

V, NUMERICAL RESULTS

We have used Prony’s method in association with condensed-

node TLM to obtain the resonant frequencies of the same inho-

mogeneous waveguide resonator that was described in Section

III. The linear least-squares problems were solved by a singular

value decomposition technique. Laguerre’s method was used for

the polynomial root finding [11]. To conserve memory the TLM

simulation used single precision arithmetic but it was found to be

necessary to use double precision arithmetic throughout the sub-

routine that implemented Prony’s method.

Both NI, the number of iterations, and NF, the number of

frequencies to fit, were varied. In Table II we list the results

obtained for NI ranging from 32 to 1024 in powers of 2. NI was

fixed at 15 for these runs. Justification for this choice of NI is

given later. To obtain +0.10 percent accuracy it is necessary to

choose NI >128. This is a considerable reduction compared with

the number of iterations needed to obtain comparable accuracy

using a FFT.

The value selected for NF has a significant effect on the

performance of Prony’s method. If too small a value is chosen,

the accuracy of the spectral estimate suffers, as the estimate
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TABLE III

TLM USING PRONY’SMETHOD ( NI = 128; NF VARIABLE)

NF Time

Prony
(See)

1 1.0

2 3.4

3 7.0
4 11.2

5 17.0

6 25.4

7 37.0

8 44.0

9 50.8
10 62.7
11 79.5
12 93.9
13 109.1

14 124.0

15 155.4

16 168.2

17 190.1

18 212.3

19 245.8
20 263.6

Frequency FP

(GHz)

6.54095 0.001

5.41799 0.000

3.30758 0.020
2.77753 0.134

2.40053 0.070

2.18275 0.037

1.85374 0.009
1.09399 0.506

9.64002 0.979

9.40548 0.993
9.29897 0.995

9.30600 0.998
9.29602 0.999

9.31200 0.999

9.31658 0.999

9.31399 0.999

9.30985 0.999
9.31218 0.999
9.31340 0.999
9.31429 0.999

Fractional

Error

-29.78%

-41.83%

-64.49%

-70.18%

-74.23%

-76.57%

-80.10%

-88.26%

+3.49%

+0.97%

-0.17%

-0.09%

-0.20%

-0.03%

+0.02%

-0.01%

-0.05%

-0.03%

-0.01%

-0.01%

NO

cannot model all the significant frequency components in the

TLM simulation. If NFischosen too big the execution time of

the program is increased. Also choosing NF too big requires

solving large matrices and rooting polynomials of large order,

which may lead to numerical instability. How shall we select
NF?

One simple approach is to choose a very small value for NF,

perform the calculations, and then increment NF and repeat the

calculations. This process is continued while monitoring the

frequency values of the spectral components of interest. When

the frequency values have converged to the desired accuracy the

process is terminated.

A more efficient approach is to measure directly the quality of

the spectraf estimate obtained using Prony’s method. We select a

value for NF and use Prony’s method to determine both the

frequencies ~, and the amplitudes a,,, b,,. Then for a time step k

in the TL~ simulation the actual response is 1A and the esti-

mated response due to Prony’s method is 1;(, which is given by

I;! = G(k At) (15)

with C(t) defined by (9). Then we define the residuaf R\/ by

R:[ = 1A _ I:f (16)

We then compare the power in the residual to the power in the

4, APRIL 1990

TLM simulation. The fractional power FP

WI

FP=l–~—.
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is given by

(17).,.
~ (z,)’

k=l

The fractional power can be used to test the value of NF. If

FP >0.999 then our experience is that the value for NIF is

satisfactory. If FP <0.999 then the value of NF shoulcl be

increased.

Table III gives results for NI = 128 and 1< NF <20. We see

that if NF <8 Prony’s method is grossly inaccurate and that

FP <0.60. If NF213 then FP >0.999 and the accuracy is

satisfactory. The data also show that the exact choice of NF is

not criticaJ provided NF is large enough.

VI. CONCLUSIONS

FFT spectral estimation methods assume that the various

frequency components in the TLM simulation are harmonically

related. A more accurate spectral estimate is possible by allowing

both the frequencies and the amplitudes to vary. These ampli-

tudes and frequencies may be found by using Prony’s method.

Prony’s method allows about a 10 to 1 reduction in the number

of steps in the TLM simulation for equal accuracy when com-

pared with FFT methods. Further work is needed to find more

efficient ways to implement Prony’s method. Improvements may

be possible in the polynomial rooting. as we know that the roots

are all real roots and lie in the inte~d [ – 1, 1].
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